
EWASH trial: a cross-over cluster randomised trial comparing electrolysed water with bleach for hospital cleaning in Nigeria

Gon G¹, Dansero L¹, Aiken A¹, Bottomley C¹, Dancer S⁴, Graham W¹, Ike C.O², Lewis M³, Meakin N³, Okafor O², Uwaezuoke N², Okwor T²

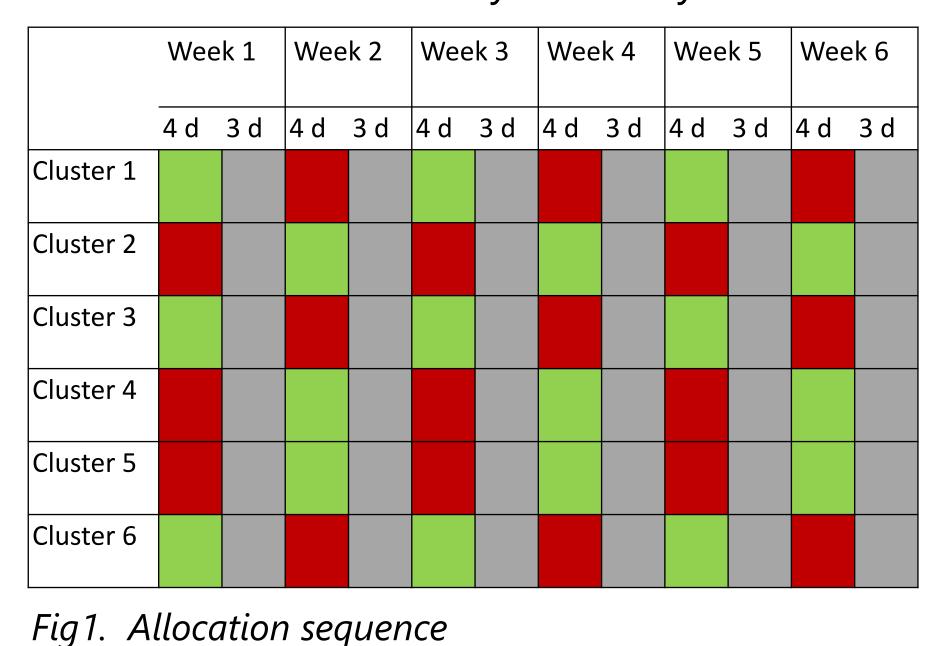
1 London School of Hygiene and Tropical Medicine

2 Nigeria Centre for Disease Control

3. Aqualution Systems Ltd

4. Napier University

Email address: giorgia.gon@lshtm.ac.uk


BACKGROUND

- Environmental hygiene is a key aspect of IPC in hospital settings.
- Cleaning practices in hospitals in low-income countries continue to rely on sodium hypochlorite ("bleach"), which is corrosive, toxic and requires accurate dilution ¹.
- Neutral Electrolysed Water (EW) is an innovative surface disinfectant with high-level antimicrobial activity which is neither toxic nor corrosive, and presents no environmental hazard ^{1,2,3}.
- **Evidence Gap:** EW has never been tested for efficacy in a LMICs hospitals, nor under a blinded comparison randomized design.

METHODS

Design

- A non-inferiority, multi-period, cross-over cluster randomised trial was used to evaluate the efficacy of EW for surface disinfection compared to standard disinfectant (chlorine-based bleach) in two hospitals in Abuja, Nigeria, over six weeks.
- Clusters were the female (medical and surgical), male (medical and surgical), and labour wards in each hospital
- Three clusters were selected in each hospital and randomly allocated to one of the two intervention-control sequences. (Fig 1 for the allocation). The **allocation** was created by the study statistician.

• Each week, the cluster received the allocated product for 4 days and there was a wash-out period of 3 consecutive days during which standard cleaning products were used.

Wash-out

Electrolyzed water - Bleach

 Hospital staff and data collectors were **blinded** to the treatment allocation because the products were provided daily with identical bottles and prepared by the project manager.

Sample size

• The study design was expected to have 87% power to demonstrate non-inferiority at a 5% margin.

Primary outcome definition

 Microbiological cleanliness was measured using double sided dipslides with non-selective agar for Aerobic Colony Count (<2.5 cfu/cm2 = clean; ≥2.5 cfu/cm2 = not clean).

Analysis

• Data were aggregated at the ward-period level. The proportion of "clean" surfaces were analysed with a standard linear regression. The model includes weeks and cluster as fixed effects.

RESULTS

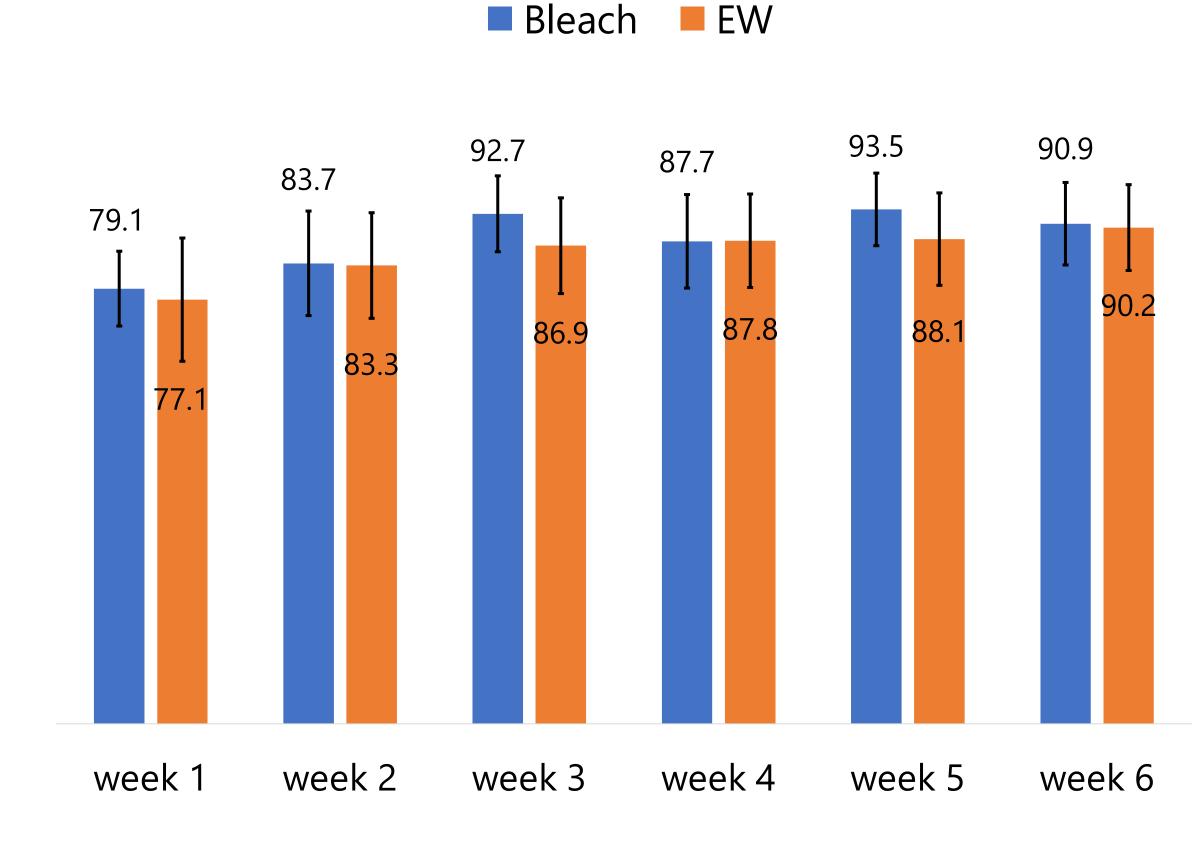


Table 1. Results from linear regression with week and cluster as fixed effects

Exposure*	% (N)	Difference	S.E.	P- value	C.I.
Bleach (ref)	87.3	1			
Electrolyzed water	84.8	-2.3%	0.0163	0.163	(-5.71 – 1.0)

DISCUSSION

This was the first randomised trial to assess the efficacy of EW compared to bleach for hospital disinfection in LMICs. Our findings suggest that EW performs similarly to bleach. Although the 5% non-inferiority margin was not strictly met, the observed average difference (2%) was smallcand not statistically significant (p=0.16).

Crucially these results are to be interpreted in the following context:

- EW performed at lower concentration compared to bleach (See product characteristics)
- Unplanned differences in group sizes led to less power compared to original sample size calculation

PRODUCT CHARACTERISTICS ELECTROLYZED WATER (hypochlorous acid) Dilution 0.015% Concentration BLEACH (sodium hypochlorite) Dilution 0.05% Concentration 500 ppm

ADVANTAGES OF EW IN PRACTICE

- EW performs similarly to bleach at a lower concentration
- We estimate that EW is
 ~10 times cheaper when
 produced locally
 compared to currently
 procured bleach
- EW is less corrosive for cleaners' skin and materials
- EW's environmental residue is negligible compared to bleach
- EW can be used for a wide set of applications: e.g. wound burns, medical equipment disinfection

Key references

- 1. Meakin, N. S., Bowman, C., Lewis, M. R. & Dancer, S. J. Comparison of cleaning efficacy between in-use disinfectant and electrolysed water in an English residential care home. J. Hosp. Infect. 80, 122–127 (2012).
 2. Thorn, R. M. S., Lee, S. W. H., Robinson, G. M., Greenman, J. & Reynolds, D. M. Electrochemically activated solutions: Evidence for antimicrobial efficacy and applications in healthcare environments. Eur. J. Clin. Microbiol. Infect. Dis. 31, 641–653 (2012).
- 3. Stewart, M. et al. Evaluating Use of Neutral Electrolyzed Water for Cleaning Near-Patient Surfaces. Infect. Control Hosp. Epidemiol. 35, 1505–1510 (2014).
- 4. Dancer, S. J., Mallon, J., Murphy, R. & Murch, C. In-use effect of electrolysed water on transcutaneous oxygen sensors. Healthc. Infect. 20, 141–144 (2015).